

pH Worksheet #3

1)	What is the pH of a 0.0235 M HCl solution?
2)	What is the pOH of a 0.0235 M HCl solution?
3)	What is the pH of a 6.50 x 10^{-3} M KOH solution? (Hint: this is a basic solution – concentration is of OH $^-$)
4)	A solution is created by measuring 3.60×10^{-3} moles of NaOH and 5.95×10^{-4} moles of HCl into a container and then water is added until the final volume is 1.00 L . What is the pH of this solution?
5)	What is the pH of a 6.2 x 10^{-5} M NaOH solution? (Hint: this is a basic solution – concentration is of OH $$)
6)	A solution with a $\mathrm{H^{+}}$ concentration of 1.00 x 10^{-7} M is said to be neutral. Why?

pH Worksheet #3 - Solutions

<u>Note</u>: The significant figures in the concentration of $[H^+]$ or $[OH^-]$ is equal to the number of decimal places in the pH or pOH and vice versa.

1) What is the pH of a 0.0235 M HCl solution?

$$pH = -log[H^+] = -log(0.0235) = 1.629$$

2) What is the pOH of a 0.0235 M HCl solution?

$$pH = -log[H^+] = -log(0.0235) = 1.629$$

 $pOH = 14.000 - pH = 14.000 - 1.629 = 12.371$

3) What is the pH of a 6.50×10^{-3} M KOH solution?

$$pOH = -log[OH^{-}] = -log(6.50 \times 10^{-3}) = 2.187$$

 $pH = 14.000 - pOH = 14.000 - 2.187 = 11.813$

4) A solution is created by measuring 3.60×10^{-3} moles of NaOH and 5.95×10^{-4} moles of HCl into a container and then water is added until the final volume is 1.00 L. What is the pH of this solution?

Since there is both acid and base we will assume a 1 mole acid:1 mole base ratio of neutralization. There is more base than acid so the leftover base is what will affect the pH of the solution.

5) What is the pH of a 6.2×10^{-5} M NaOH solution?

$$pOH = -log[OH^{-}] = -log(6.2 \times 10^{-5}) = 4.21$$

 $pH = 14.00 - pOH = 14.00 - 4.21 = 9.79$

6) A solution with a H^+ concentration of 1.00 x 10^{-7} M is said to be neutral. Why?

pH =
$$-log[H^+]$$
 = $-log(1.00 \times 10^{-7})$ = 7.000
pOH = $14.000 - pH$ = $14.000 - 7.000$ = 7.000
pOH = $-log[OH^-]$ = $-log(OH^-)$ = 7.000 we can use this to find the OH⁻ concentration
 $-log[OH^-]$ = 7.000
 $log[OH^-]$ | 7.000
10 = 10
 $[OH^-]$ | $= 10^{7.000}$
 $\frac{1}{[OH^-]}$ = $10^{7.000}$
 $[OH^-]$ = 1.00×10^{-7} M

The concentrations of H⁺ and OH⁻ are equal, as are the pH and pOH, so the solution must be neutral.