pH Worksheet \#3

1) What is the pH of a 0.0235 M HCl solution?
2) What is the pOH of a 0.0235 M HCl solution?
3) What is the pH of a $6.50 \times 10^{-3} \mathrm{M} \mathrm{KOH}$ solution? (Hint: this is a basic solution concentration is of OH^{-})
4) A solution is created by measuring 3.60×10^{-3} moles of NaOH and $5.95 \times 10^{-4} \mathrm{moles}$ of HCl into a container and then water is added until the final volume is 1.00 L . What is the pH of this solution?
5) What is the pH of a $6.2 \times 10^{-5} \mathrm{M} \mathrm{NaOH}$ solution? (Hint: this is a basic solution concentration is of OH^{-})
6) A solution with a H^{+}concentration of $1.00 \times 10^{-7} \mathrm{M}$ is said to be neutral. Why?

pH Worksheet \#3-Solutions

Note: The significant figures in the concentration of $\left[H^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$is equal to the number of decimal places in the pH or pOH and vice versa.

1) What is the pH of a 0.0235 M HCl solution?

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log (0.0235)=1.629
$$

2) What is the pOH of a 0.0235 M HCl solution?
$\mathbf{p H}=-\log \left[\mathrm{H}^{+}\right]=-\log (0.0235)=1.629$
$\mathrm{pOH}=14.000-\mathrm{pH}=14.000-1.629=12.371$
3) What is the pH of a $6.50 \times 10^{-3} \mathrm{M} \mathrm{KOH}$ solution?
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(6.50 \times 10^{-3}\right)=2.187$
$\mathrm{pH}=14.000-\mathrm{pOH}=14.000-2.187=11.813$
4) A solution is created by measuring 3.60×10^{-3} moles of NaOH and 5.95×10^{-4} moles of HCl into a container and then water is added until the final volume is 1.00 L . What is the pH of this solution?
Since there is both acid and base we will assume a 1 mole acid:1 mole base ratio of neutralization. There is more base than acid so the leftover base is what will affect the pH of the solution.
3.60×10^{-3} moles -5.95×10^{-4} moles $=3.01 \times 10^{-3}$ moles NaOH
3.01×10^{-3} moles $\mathrm{NaOH}=3.01 \times 10^{-3} \mathrm{M} \mathrm{NaOH}$

1.00 L soln

$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(3.01 \times 10^{-3}\right)=2.521$
$\mathrm{pH}=14.000-\mathrm{pOH}=14.000-2.521=11.479$
5) What is the pH of a $6.2 \times 10^{-5} \mathrm{M} \mathrm{NaOH}$ solution?

$$
\begin{aligned}
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log \left(6.2 \times 10^{-5}\right)=4.21 \\
& \mathrm{pH}=14.00-\mathrm{pOH}=14.00-4.21=9.79
\end{aligned}
$$

6) A solution with a H^{+}concentration of $1.00 \times 10^{-7} \mathrm{M}$ is said to be neutral. Why?
```
pH=-log[H+}]=-\operatorname{log}(1.00\times10-7 )=7.00
pOH = 14.000-pH = 14.000-7.000 = 7.000
pOH = -log[OH}\mp@subsup{}{}{`}]=-\operatorname{log}(\mp@subsup{\textrm{OH}}{}{-})=7.000 we can use this to find the OH- concentratio
-log[OH
log[OH}\mp@subsup{]}{}{-1}=7.00
    log[OH-] ]-1
10 = 10
[OH-] -1 = 10
1}[\mp@subsup{\textrm{OH}}{}{-}]=107.00
[OH`]
[OH}\mp@subsup{}{}{-}]=1.00\times1\mp@subsup{0}{}{-7}\textrm{M
```

The concentrations of H^{+}and OH^{-}are equal, as are the pH and pOH , so the solution must be neutral.

